Skip to content

8.15 Sets Tutorial

Subset question

\(A \subseteq B~and~C\subseteq D. Prove~that~(A\cup C)\subseteq(B\cup D)\)

Proof:

Pick \(x\), due to definition, we need to prove \(x\in(A\cup C)\Rightarrow x\in (B\cup D)\).

\(x\in(A\cup C)\Rightarrow (x\in A)\cup (x \in C)\Rightarrow (x\in B)\cup (x \in D)\Rightarrow x\in (B\cup D)\)

Complement set question

\(If~A\subseteq B,~then~B^{C}\subseteq A^{C}\)

Proof

Pick \(x\), due to definition, we need to prove \(x\in B^{C}\Rightarrow x\in A^{C}\)

\(x\in B^{C}\Rightarrow x\notin B\Rightarrow x\notin A \Rightarrow x\in A^{C}\)

Relative complement question

\(A \setminus B=(A\cap B^{C})\)

Proof

By definition, we need to prove \((A \setminus B)\subseteq (A\cap B^{C})~and~(A \setminus B)\supseteq (A\cap B^{C})\)

1.\(A \setminus B\Rightarrow x\in A:x\notin B\Rightarrow x\in A:x\in B^{C}\Rightarrow x\in (A\cap B^{C})\)

2.Similarly

Trick:

\[ For~all~sentences~P~and~Q~the~following\\P\Rightarrow P\vee Q~~~P\wedge Q\Rightarrow P~~~P\vee Q\Leftrightarrow Q\vee P\\Q\Rightarrow P\vee Q~~~P\wedge Q\Rightarrow Q~~~P\wedge Q\Leftrightarrow Q\wedge P\\are~true. \]

All can prove by truth table.

If A, B are sets, prove that

  1. \(A\subseteq A\cup B~and~B\subseteq A\cup B\)

    Proof

    \[ \begin{aligned}(a)&\quad x\in A~\Rightarrow x\in A~~or~~x\in B\quad\mathrm{since~}P\Rightarrow P\vee Q\\&\quad~~~~~~~~~~~\Rightarrow x\in A\cup B\quad\\&\quad\mathrm{thus~A\subseteq A\cup B\quad Analogously,~we~have~B\subseteq A\cup B.}\end{aligned} \]
  2. \(A\cap B\subseteq A~and~A\cap B\subseteq B\)

    Proof

\[ \begin{aligned}(b)~&x\in A\cap B\Rightarrow x\in A\mathrm{~and~}x\in B\mathrm{~~~since~}P\cap Q\Rightarrow P\\&~~~~~~~~~~~~~~~~~\Rightarrow x\in A\\&thus~A\cap B\subseteq A.~Analogously,we~have A\cap B\subseteq B\\\end{aligned} \]
  1. \(A\cup B=B\cup A\)

    Proof

    \[ \begin{aligned}(c)~&x\in A\cup B\Leftrightarrow x\in A\mathrm{~or~}x\in B~~~since~P\vee Q\Leftrightarrow Q\vee P\\&~~~~~~~~~~~~~~~~~~\Leftrightarrow x\in B\mathrm{~or~}x\in A\\&thus~A\cup B=B\cup A.\end{aligned} \]
  2. \(A\cap B=B\cap A\)

    Proof

    \[ \begin{aligned}(d)~&x\in A\cap B\Leftrightarrow x\in A\mathrm{~and~}x\in B~~~since~P\wedge Q\Leftrightarrow Q\wedge P\\&~~~~~~~~~~~~~~~~~~\Leftrightarrow x\in B\mathrm{~and~}x\in A\\&thus~A\cap B=B\cap A.\end{aligned} \]

Fun

Since \((A^{C})^{C}=A\), Prove \(A\setminus B=B^{C}\setminus A^{C}\)

\(A\setminus B=A\cap B^{C}=B^{C}\cap A=B^{C}\cap(A^{C})^{C}=B^{C}\setminus A^{C}\)