8.15 Sets Tutorial
Subset question
\(A \subseteq B~and~C\subseteq D. Prove~that~(A\cup C)\subseteq(B\cup D)\)
Proof:
Pick \(x\), due to definition, we need to prove \(x\in(A\cup C)\Rightarrow x\in (B\cup D)\).
\(x\in(A\cup C)\Rightarrow (x\in A)\cup (x \in C)\Rightarrow (x\in B)\cup (x \in D)\Rightarrow x\in (B\cup D)\)
Complement set question
\(If~A\subseteq B,~then~B^{C}\subseteq A^{C}\)
Proof
Pick \(x\), due to definition, we need to prove \(x\in B^{C}\Rightarrow x\in A^{C}\)
\(x\in B^{C}\Rightarrow x\notin B\Rightarrow x\notin A \Rightarrow x\in A^{C}\)
Relative complement question
\(A \setminus B=(A\cap B^{C})\)
Proof
By definition, we need to prove \((A \setminus B)\subseteq (A\cap B^{C})~and~(A \setminus B)\supseteq (A\cap B^{C})\)
1.\(A \setminus B\Rightarrow x\in A:x\notin B\Rightarrow x\in A:x\in B^{C}\Rightarrow x\in (A\cap B^{C})\)
2.Similarly
Trick:
All can prove by truth table.
If A, B are sets, prove that
-
\(A\subseteq A\cup B~and~B\subseteq A\cup B\)
Proof
\[ \begin{aligned}(a)&\quad x\in A~\Rightarrow x\in A~~or~~x\in B\quad\mathrm{since~}P\Rightarrow P\vee Q\\&\quad~~~~~~~~~~~\Rightarrow x\in A\cup B\quad\\&\quad\mathrm{thus~A\subseteq A\cup B\quad Analogously,~we~have~B\subseteq A\cup B.}\end{aligned} \] -
\(A\cap B\subseteq A~and~A\cap B\subseteq B\)
Proof
-
\(A\cup B=B\cup A\)
Proof
\[ \begin{aligned}(c)~&x\in A\cup B\Leftrightarrow x\in A\mathrm{~or~}x\in B~~~since~P\vee Q\Leftrightarrow Q\vee P\\&~~~~~~~~~~~~~~~~~~\Leftrightarrow x\in B\mathrm{~or~}x\in A\\&thus~A\cup B=B\cup A.\end{aligned} \] -
\(A\cap B=B\cap A\)
Proof
\[ \begin{aligned}(d)~&x\in A\cap B\Leftrightarrow x\in A\mathrm{~and~}x\in B~~~since~P\wedge Q\Leftrightarrow Q\wedge P\\&~~~~~~~~~~~~~~~~~~\Leftrightarrow x\in B\mathrm{~and~}x\in A\\&thus~A\cap B=B\cap A.\end{aligned} \]
Fun
Since \((A^{C})^{C}=A\), Prove \(A\setminus B=B^{C}\setminus A^{C}\)
\(A\setminus B=A\cap B^{C}=B^{C}\cap A=B^{C}\cap(A^{C})^{C}=B^{C}\setminus A^{C}\)