Skip to content

9.5 Polynomials

Irreducible

\(p(x)\in \mathbb{R}[x]\), we say that \(p\) is irreducible if \(p(x)=h(x)\cdot q(x),p(x)\in \R[x],q(x)\in \R[x]\Rightarrow h(x)\) is constant or \(q(x)\) is constant

Example

\(p(x)=x^2-2\in Z[x]\subseteq Q[x]\subseteq R[x]\subseteq C[x]\)

Note that \(p(x)\) is not irreducible in \(R[x]\)

\(p(x)=(x-\sqrt2)(x+\sqrt2)\)

But \(p(x)\) is irreducible in \(Q[x]\)

Suppose that \(p(x)=(x-a)(x-b)\) with \(a,b\in Q\)

\(\Rightarrow p(x)=x^2-(a+b)x+ab\Rightarrow a+b=0/ab=-2\), then we have \(b=-a,a^2=2\)

\(\Rightarrow a\notin Q\) Contradiction

Proposition=9=

\(p(x)\in K[x]\),then

  1. \(deg(p)=1\Rightarrow p\) is irreducible

    Suppose \(p(x)=h(x)q(x)\)

    Then \(1=deg(p)=deg(h)+deg(q)\Rightarrow deg(h)=0~or~deg(q)=0\)

  2. \(deg(p)=2~or ~3\), then p is irreducible \(\Leftrightarrow\) p has no roots in \(K\)

    \(\Rightarrow\)) If \(p\) has roots: \(p(\alpha)=0\Rightarrow(x-\alpha)|p(x)\Rightarrow(x-\alpha)h(x)=p\left(x\right)\Rightarrow deg(h)>0\)

    then \(p(x)\) has a nontrivial factorization

    \(\Leftarrow\)) Hypothesis: \(p(x)\) has no roots in \(K\)

    Suppose \(p(x)=h(x)q(x)\)

    Key observation: \(deg(h)\neq 1,deg(q)\neq 1\)

    If \(deg(h)=1\Rightarrow h(x)=ax+b\) with \(a,b\in K\)

    Then \(h(-\frac{b}{a})=0\Rightarrow p(-\frac{b}{a})=0\Rightarrow p\) has a root, contradiction

    The same works to prove that \(deg(q)\neq 1\)

    Then, if \(p(x)=h(x)q(x)\)

    \(deg(p)=2\Rightarrow\)Since \(2=2+0=0+2\), then either h or q is a constant

    \(deg(p)=3\Rightarrow\)Since \(3=3+0=0+3\), then either h or q is a constant

    Therefore p is irreducible

Proposition

Let \(p(x)\in K[x]\),\(deg(p(x))=n\in N_0\)

Then \(p(x)\) has at most n roots in K (No more than n roots)

Claim: If \(\alpha_1\,...,\alpha_k\) are different roots of a polynomial \(p(x)\)

Then \(p(x)=(x-\alpha_1)(x-\alpha_2)...(x-\alpha_k)c(x)\)

Induction in \(k\):

Base case: \(k=1\)

\(p(\alpha) = 0 \implies (x - \alpha) | p(x) \implies p(x) = (x - \alpha) \cdot c(x)\)

Inductive step:

Suppose that the claim is true for \(k - 1\)

Consider \(\alpha_1, \alpha_2, \dots, \alpha_{k}\) roots of \(p(x)\)

Then \(p(x) = (x - \alpha_k) \cdot q(x)\)

Then \(\alpha_1, \alpha_2, \dots, \alpha_{k-1}\) are roots of \(q(x)\)

\(\implies q(x) = (x - \alpha_1) \cdot \dots \cdot (x - \alpha_{k-1}) \cdot c(x)\)

Then, \(p(x) = (x - \alpha_k) \cdot q(x) = (x - \alpha_k) \cdot (x - \alpha_1) \cdot \dots \cdot (x - \alpha_{k-1}) \cdot c(x)\).

Eisenstein criterion for irreducibility=8=

Let \(p(x)\in Z[x]\), \(\begin{aligned}p(X)=\sum_{j=0}^na_jx^j\end{aligned}\)

Suppose that there exists a prime number q

  • \(q \mid a_j\) for \(j = 0, 1, \dots, n-1\)
  • \(q^2 \nmid a_0\)
  • \(q \nmid a_n\)

Then \(p(x)\) is irreducible

Before the proof, an example

\(p(x) = 2x^5 - 6x^3 + 9x^2 - 15\).

Note that \(q = 3\) works:
a) \(3 \mid -15\), \(3 \mid 9\), \(3 \mid -6\)
b) \(9 \nmid -15\)
c) \(3 \nmid 2\)

Then: \(p(x)\) cannot be factored as \(p(x) = h(x) \cdot q(x)\) with a non-trivial decomposition.

The proof:

Suppose we have \(p(x) = h(x) \cdot q(x)\), where \(\deg(h) > 0\) and \(\deg(q) > 0\).

Write: \(\begin{aligned}p(x) = \sum_{j=0}^{n} a_j x^j = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0\end{aligned}\)\(\begin{aligned}h(x) = \sum_{j=0}^{d} b_j x^j\end{aligned}\) \(\begin{aligned}q(x) = \sum_{j=0}^{e} c_j x^j\end{aligned}\)

We know that \(n = d + e \quad (d < n)\).

Now, since \(q \mid a_0\)\(\implies q \mid b_0 c_0\)

\(p(x) = \left(b_d x^d + b_{d-1} x^{d-1} + \dots + b_1 x + b_0\right)\left(c_e x^e + c_{e-1} x^{e-1} + \dots + c_1 x + c_0\right)\)

\(\implies q \mid b_0\) or \(q \mid c_0\) due to the hypothesis ( \(q^2 \nmid a_0\))

Also, \(q^2 \nmid a_0 \implies (q \mid b_0 \land q \nmid c_0)\) or \((q \nmid b_0 \land q \mid c_0)\)

Suppose that the case is \(q \mid b_0 \land q \nmid c_0\).

Consider \(k = \min \{ j \in \mathbb{N} : q \nmid b_j \}~~~0<k\leq deg(h)=d<n\)

i.e., \(q \nmid b_k\), \(q \mid b_{0}, q \mid b_{1}, \dots, q \mid b_{k-1}\)

Consider the coefficient \(a_k\) from \(p(x)\):

\(\begin{aligned}a_k = \sum_{i+j=k} b_i c_j = b_k c_0 + b_{k-1} c_1 + \dots + b_1 c_{k-1} + b_0 c_k\end{aligned}\)

By hypothesis, \(q \mid a_k\) and \(q \mid b_0, b_1, \dots, b_{k-1}\).

\(\implies q \mid b_k c_0\). Then \(q \mid b_k\): Contradiction!

Conclusion: \(h(x)\) is constant or \(q(x)\) is constant

Polynomials in \(\mathbb{Z}[x]\) and rational roots=8=

Let \(m \in \mathbb{N}\), \(\begin{aligned}p(x) = \sum_{j=0}^{n} a_j x^j\end{aligned}\). Consider the fraction \(\frac{r}{s} \in \mathbb{Q}\) with \((r:s) = 1,r,s\in \Z\).

If \(p\left( \frac{r}{s} \right) = 0 \implies r \mid a_0 \ \land \ s \mid a_n\)

Proof: We have that \(p\left( \frac{r}{s} \right) = 0\).

\(\begin{aligned}0 = \sum_{j=0}^{n} a_j \left( \frac{r}{s} \right)^j\end{aligned}\)

Multiplying by \(s^m\):

\(\begin{aligned}0 = \sum_{j=0}^{n} a_j r^j s^{n-j}\end{aligned}\)

\(0 = a_0 s^n + a_1 r s^{n-1} + a_2 r^2 s^{n-2} + \dots + a_{n-1} r^{n-1} s + a_n r^n\)

\(-a_0 s^n = r \left( a_1 s^{n-1} + a_2 r s^{n-2} + \dots + a_n r^{n-1} \right)\)

\(\implies r \mid a_0\) since the right hand can be divisible by r, so the left hand is same, due to \((r:s)=1\)

Similarly

\(-a_n r^n = s \left( a_0 s^{n-1} + a_1 r s^{n-2} + \dots + a_{n-1} r^{n-1} \right)\)

\(\implies s \mid a_n\)

Example:

\(p(x) = 3x^3 + 2x^2 - 2x - 8\)

If \(\frac{r}{s} \in \mathbb{Q}\) is a root, \(p\left( \frac{r}{s} \right) = 0\), then

\(\frac{r}{s} \in \left\{ \pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3} \right\}\)

Polynomials in \(\mathbb{R}[x]\) and complex roots:

Proposition

Let \(p(x) \in \mathbb{R}[x]\), \(\begin{aligned}p(x) = \sum_{j=0}^{m} a_j x^j\end{aligned}\).

If \(z \in \mathbb{C}\) is a root \((p(z) = 0)\), then \(\bar{z}\) is also a root: \(p(\bar{z}) = 0\).

Example

\(p(x) = x^2 + 4\)

\(z = 2i\) is a root, \(p(2i) = 4i^2 + 4 = 0\)

Then \(\bar{z} = -2i\) is also a root: \(p(-2i) = 4i^2 + 4 = 0\)

Proof

$\begin{aligned} p(\bar{z}) &= \sum_{j=0}^{n} a_j \bar{z}^j = \sum_{j=0}^{n} {a_j} \overline{(z)^j} = \sum_{j=0}^{n} \bar{a_j} \overline{z^j} \quad \text{(since \(a_j \in \mathbb{R} \implies \bar{a_j} = a_j\))} \end{aligned} $​

$\begin{aligned} = \sum_{j=0}^{n}\overline{ a_j z^j} = \overline{\sum_{j=0}^{n} a_j z^j} = \overline{p(z)} = \overline{0} = 0\end{aligned} $​

Therefore, \(p \in \mathbb{R}[x] \implies\) complex roots come by pairs.

Consequence

\(p(x) \in \mathbb{R}[x]\), \(\deg(p(x)) = 2k+1\), \(k \in \mathbb{N}_0\) (odd degree).

Then, \(\exists \alpha \in \mathbb{R}\) such that \(p(\alpha) = 0\).

complex roots are pair so they are even

Fundamental Theorem of Algebra (without proof)

\(p(x) \in \mathbb{C}[x]\), \(\deg(p(x)) = n \in \mathbb{N}_0\).

Then \(p(x)\) has exactly \(n\) roots in \(\mathbb{C}\).

Corollary

  1. \(p(x) \in \mathbb{C}[x]\). Then \(p(x)\) is irreducible in \(\mathbb{C}[x]\) \(\iff \deg(p(x)) = 1\).

  2. \(p(x) \in \mathbb{C}[x]\), then it can be expressed as \(p(x) = (x - c_1)(x - c_2) \dots (x - c_m)\) with \(C_j \in \mathbb{C}\) and \(n = \deg(p(x))\).

Note 9.9

For a polynomial \(p(x) \in R[x]\) (remember \(R \in \{ \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \}\)),

We say that \(p(x)\) is irreducible if:

\[ p(x) = h(x) \cdot q(x) \implies h(x) \text{ or } q(x) \text{ is an invertible constant } c \in R. \]

Note: \(c \in \mathbb{Q}, \mathbb{R}, \mathbb{C}, (c \neq 0)\)

Then, \(\exists c^{-1}:c^{-1}\cdot c=1\)

The difference appears in \(\mathbb{Z}[x]\):

\[ p(x) = 2x + 4 = 2(x + 2) \]

Not irreducible in \(\mathbb{Z}[x]\).

Primitive

Definition: Let \(p(x) \in \mathbb{Z}[x]\),

\[ p(x) = \sum_{j=0}^{n} a_j x^j, \ a_j \in \mathbb{Z} \]

We say that \(p(x)\) is primitive if:

\[ \gcd(a_0, a_1, \dots, a_n) = 1 \]

Equivalently: \(q \mid a_j \ \forall j = 0, \dots, m \implies q = \pm 1\)

Proposition

Then, if \(p(x) \in \mathbb{Z}[x]\), primitive, then:

\(p(x)\) irreducible \(\Leftrightarrow p(x)\) has no proper factorizations

Gauss' Lemma=8=

Consider \(f(x) \in \mathbb{Z}(x)\) such that \(f(x) = h(x) \cdot g(x) \text{ with } g(x), h(x) \in \mathbb{Z}(x)\)

Let

\[ h(x) = \sum_{j=0}^{n} a_j x^j, \quad g(x) = \sum_{j=0}^{m} b_j x^j,\quad f(x) = \sum_{k=0}^{n + m} c_k x^k \]

Then: If \(p \in \mathbb{Z}\) is a prime such that \(p \mid c_k \ \forall k = 0, \dots, m+n\),

\[ \implies p \mid a_j \text{ for } j = 0, \dots, n \text{ or } p \mid b_j \text{ for } j = 0, \dots, m. \]

Proof: Let \(p \in \mathbb{Z}\) be a prime such that \(p \mid c_k, \ k = 0, \dots, m+n.\)

Suppose the lemma is not true:

\[ \exists \ r = \min\{j = 0, \dots, m : p \nmid a_j\} \text{ and } s = \min\{j = 0, \dots, m : p \nmid b_j\}. \]

This means that \(p \mid a_0, p \mid a_1, \dots, p \mid a_{r-1}, p \nmid a_r\)

\(p \mid b_0, p \mid b_1, \dots, p \mid b_{s-1}, p \nmid b_s\)

Consider the coefficient \(c_{r+s}\) in \(f(x)\):

\[ c_{r+s} = \sum_{i+j = r+s} a_i b_j = \sum_{k=0}^{r+s} a_k b_{r+s-k} \]

Thus,

\[ c_{r+s} = a_0 b_{r+s} + a_1 b_{r+s-1} + \dots + a_{r+s} b_0. \]
\[ c_{r+s} = \sum_{k=0}^{r+s} a_k b_{r+s-k} = a_r b_s + \sum_{k=0}^{r-1} a_k b_{r+s-k} + \sum_{k=r+1}^{r+s} a_k b_{r+s-k} \]

By hypothesis, the entire sum \(c_{r+s}\) is a multiple of \(p\). Breaking this down:

  • \(a_r b_s\): This term is the only one where neither \(a_r\) nor \(b_s\) is divisible by \(p\).
  • \(\sum_{k=0}^{r-1} a_k b_{r+s-k}\): Each \(a_k\) for \(k = 0, \dots, r-1\) is divisible by \(p\) (multiple of \(p\)).
  • \(\sum_{k=r+1}^{r+s} a_k b_{r+s-k}\): Each \(b_j\) for \(j = 0, \dots, s-1\) is divisible by \(p\) (multiple of \(p\)).

This implies that \(p \mid a_r \cdot b_s \implies p \mid a_r \text{ or } p \mid b_s\)

Contradiction!

Equivalently: \(f(x), g(x), h(x) \in \mathbb{Z}(x)\). If \(g(x), h(x)\) are primitive and \(f(x) = g(x) \cdot h(x)\), then \(f(x)\) is primitive.

Some remarks on primitive polynomials:

  1. Let \(p(x) \in \mathbb{Z}[x]\). Then there exists a constant \(d \in \mathbb{Z}\) such that \(p(x) = d \cdot p_0(x)\) with \(p_0(x)\) primitive.

  2. Let \(f(x) \in \mathbb{Q}[x]\). Then \(\exists \ a \in \mathbb{Z}\) such that \(f(x) = \frac{1}{a} f_0(x)\) with \(f_0(x) \in \mathbb{Z}[x]\).

For example: \(f(x) = \frac{1}{2} x^2 + \frac{2}{3} x + \frac{1}{4} = \frac{1}{2} (6x^2 + 8x + 3)\)

  1. Let \(f(x) \in \mathbb{Q}[x]\). There exist \(a \in \mathbb{Q}\) such that \(f(x) = a \cdot f_0(x)\) with \(f_0(x) \in \mathbb{Z}[x]\) primitive.

Remark=8=

If there is also another way of writing this, \(f(x) = b \cdot g_0(x)\) with \(g_0(x) \in \mathbb{Z}[x]\)

Then \(a = \pm b, \ f_0(x) = \pm g_0(x)\) and \(f_0(x)\) is primitive.

To see this, consider: \(a \cdot f_0(x) = b \cdot g_0(x)\) with \(f_0(x), g_0(x)\) primitive.

Equivalently: \(f_0(x) = \frac{b}{a} \cdot g_0(x)\)

Write \(\frac{b}{a} = \frac{r}{s}\) with \(r, s \in \mathbb{Z}\) and \(\gcd(r, s) = 1\).

Suppose \(r > s > 0\) (the other cases are similar).

Now consider: \(\frac{b}{a} = \frac{r}{s}\) with \(f_0(x), g_0(x)\) primitive.

If \(p \mid r\) and \(p \mid s \implies p\) divides all the coefficients in \(s \cdot f_0(x)\).

Then \(p\) is a divisor of all coefficients in \(f_0(x)\). Contradiction.

Thus, \(a = \pm b\).

Theorem=8=

Let \(p(x) \in \mathbb{Z}[x]\) be primitive.

\(p(x)\) irreducible in \(\mathbb{Z}[x] \Leftrightarrow p(x)\) irreducible in \(\mathbb{Q}[x]\).

\(\Leftarrow\) Suppose that \(p(x)\) is not irreducible in \(\mathbb{Z}[x]\).

Then \(p(x) = h(x) \cdot q(x)\) with \(\deg(h(x)) \geq 1\), \(\deg(q(x)) \geq 1\).

Since \(h(x), q(x) \in \mathbb{Z}[x] \subseteq \mathbb{Q}[x] \implies p(x)\) can be reduced in \(\mathbb{Q}[x]\).

\\\\h(x) g(x) 不一定 primitive

\(\Rightarrow\) Suppose that \(p(x) = h(x) \cdot q(x)\) with \(h(x), q(x) \in \mathbb{Q}[x]\), \(\deg(h(x)) \geq 1\), \(\deg(q(x)) \geq 1\).

Let \(a, b \in \mathbb{Z}\) such that:

  • \(a \cdot h(x) \in \mathbb{Z}[x]\), so \(a \cdot h(x) = \bar{h}(x)\),
  • \(b \cdot q(x) \in \mathbb{Z}[x]\), so \(b \cdot q(x) = \bar{q}(x)\).

Thus \(a \cdot b \cdot p(x) = a \cdot \bar{h}(x) \cdot b \cdot \bar{q}(x) = \bar{h}(x) \cdot \bar{q}(x)\)

Let \(\alpha, \beta \in \mathbb{Z}\) such that:

  • \(\bar{h}(x) = \alpha \cdot h_0(x)\), with \(h_0(x)\) primitive,
  • \(\bar{q}(x) = \beta \cdot q_0(x)\), with \(q_0(x)\) primitive.

Thus \(a \cdot b \cdot p(x) = \alpha \cdot \beta \cdot h_0(x) \cdot q_0(x)\)

Therefore \(p(x) = \frac{\alpha \cdot \beta}{a \cdot b} \cdot h_0(x) \cdot q_0(x)\)

Since \(h_0(x) \cdot q_0(x)\) is primitive (by Gauss' Lemma), \(p(x)\) is primitive.

Then (we saw it before): \(p(x) = \pm h_0(x) \cdot q_0(x)\)

\(\Rightarrow p(x)\) is not irreducible in \(\mathbb{Z}[x]\).