Skip to content

9.2 Limit and complex number

1.Exercise about limit

Prove that \(a_n=(-1)^n\) has no limit

Suppose \((-1)^n\) has \(\lim L\)

NTP: \(\left|(-1)^n - L\right| < \epsilon\)

  1. \(n\) is even

\(\left|1 - L\right| < \epsilon \implies -\epsilon < L - 1 < \epsilon\)

\(\implies 1 - \epsilon < L < 1 + \epsilon\)

  1. \(n\) is odd

\(\left| -1 - L\right| < \epsilon \implies -\epsilon < L + 1 < \epsilon\)

\(\implies -1 - \epsilon < L < -1 + \epsilon\)

If we take \(\epsilon = \frac{1}{2}\)

\(L \in \left( \frac{1}{2}, \frac{3}{2} \right) \cup \left( -\frac{3}{2}, -\frac{1}{2} \right)\) Contradiction

2.Infinity

We say that \(\lim_{n\to\infty}a_{n}=+\infty\) if \(\forall M>0,\exists n_0|a_n>M, ~\forall n\geq n_0\)

image-20240902191316-bq09x7r

\(\lim_{n\to\infty}a_{n}=-\infty\)

3.Proposition

Let \(a_n\) be a sequence, prove that

If \(a_n\) is convergent(\(\exists \lim_{n\to\infty}a_{n}=L\in R)\Rightarrow a_n\) is bounded

(why no equivalent \(a_n=(-1)^n\))

Proof

image-20240902192425-tkyb8lt

Consider \(\varepsilon=1\) in the definition of limit

Then \(\exists n_0||a_n-L|<1~~\forall n\geq n_0\)

Then \(\forall n\geq n_0,|a_n|<|L|+1\) due to

\(||a_n|-|L||\leq |a_n-L|<1\Rightarrow|a_n|<|L|+1\)

To control \(a_1,a_2,a_3...a_{n_0-1}\),pick a large \(M\) such that \(|a_j|\leq M,~\forall j=1,2,...,n_0-1\)

Then \(|a_n|\leq max\{M,|L|+1\}\)

4.Algebra of limits=9=

Consider \((a_n)_{n\in N}\),\((b_n)_{n\geq 1}\) two sequences

\(\lim_{n\to\infty}a_{n}=a\) \(\lim_{n\to\infty}b_{n}=b\)

  1. \(\lim_{n\to\infty}(a_{n}+b_n)=a+b\)

    To prove this, let \(\varepsilon>0\). We need to find \(n_0\in N\)

    N.T.P \(|a_n+b_n-(a+b)|<\varepsilon\)

    Note that \(|a_{n}+b_{n}-(a+b)|\leq|a_{n}-a|+|b_{n}-b|\)

    Since \(a_n\rightarrow a\), we know that there is some \(n_0\in N||a_n-a|<\frac{\varepsilon}{2},~\forall n\geq n_0\)

    Similarly, \(b_n\rightarrow b\) so we can take \(n_1\in N||b_n-b|<\frac{\varepsilon}{2},~\forall n\geq n_1\) more strict restrict

    Then if \(n\geq max\{n_0,n_1\}\) we have that

    \(|a_n+b_n-(a+b)|\leq |a_n-a|+|n_b+b|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\)

  2. \(\lim_{n\to\infty}(a_{n}b_n)=ab\)

    To prove this, consider \(\varepsilon >0\)

    N.T.P. \(\exists n_0\in N||a_nb_n-ab|<\varepsilon~~\forall n\geq n_0\)

    Note that \(|a_nb_n-ab|=|a_nb_n+a_nb-a_nb-ab|\leq |a_n(b_n-b)|+|b||a_n-a|\leq |a_n||b_n-b|+|b||a_n-a|\)

    Now since \(a_n\) is convergent, there \(M\in R||a_n|\leq M~\forall n\in N\)

    Then \(|a_nb_n-ab|\leq M|b_n-b|+|b||a_n-a|\) spilit into two parts

    Consider \(n_1\in N||b_n-b|<\frac{\varepsilon}{2M}~\forall n\geq n_1(b_n\rightarrow b)\)

    Also, \(n_2\in N||a_n-a|<\frac{\varepsilon}{2|b|}~\forall n\geq n_2(a_n\rightarrow a)\)

    Then, if \(n\geq max\{n_1,n_2\},\) we have that

    \(|a_nb_n-ab|\leq M|b_n-b|+|b||a_n-a|<M\frac{\varepsilon}{2M}+|b|\frac{\varepsilon}{2|b|}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\)

  3. If \(b\neq 0\), \(\lim_{n\to\infty}\frac{a_{n}}{b_n}=\frac{a}{b}\)

    Proof exercise

    Lemma 1: If \(\lim_{n \to \infty} a_n = \ell\) and \(\ell > 0\), then there is a number \(X\) such that \(a_n > \frac{1}{2} \ell\) for all \(n > X\).

    Proof: Since \(\frac{1}{2} \ell > 0\), the terms \(a_n\) must eventually lie within a distance \(\frac{1}{2} \ell\) of the limit \(\ell\).

    In other words, there is a number \(X\) such that

    \(|a_n - \ell| < \frac{1}{2} \ell\), for all \(n > X\).

    Hence \(-\frac{1}{2} \ell < a_n - \ell < \frac{1}{2} \ell\), for all \(n > X\)

    and so the left-hand inequality gives

    \(\frac{1}{2} \ell < a_n\), for all \(n > X\), as required.

    Proof: We assume that \(m > 0\); the proof for the case \(m < 0\) is similar. Once again, the idea is to write the required expression in terms of \(a_n - \ell\) and \(b_n - m\):

    \[ \frac{a_n}{b_n} - \frac{\ell}{m} = \frac{m(a_n - \ell) - \ell(b_n - m)}{b_n m}. \]

    Now, however, there is a slight problem: \(\{m(a_n - \ell) - \ell(b_n - m)\}\) is certainly a null sequence, but the denominator is rather awkward. Some of the terms \(b_n\) may take the value \(0\), in which case the expression is undefined.

    However, by Lemma 1, we know that for some \(X\) we have

    \[ b_n > \frac{1}{2} m, \quad \text{for all } n > X. \]

    Thus, for all \(n > X\):

    \[ \left|\frac{a_n}{b_n} - \frac{\ell}{m}\right| = \frac{|m(a_n - \ell) - \ell(b_n - m)|}{b_n m} \]
    \[ \leq \frac{|m(a_n - \ell) - \ell(b_n - m)|}{\frac{1}{2} m^2} \]
    \[ \leq \frac{|m| \times |a_n - \ell| + |\ell| \times |b_n - m|}{\frac{1}{2} m^2}. \]

5.Back to the example

\(a_n\) defined by: \(a_1>0(any)\). \(a_{n+1}=\frac{a_n^2+2}{2a_n}\)

Conjecture: \(lim_{n\to\infty}a_n=\sqrt2\) whatever \(a_n\) we choose

We will prove that 1) \(a_n\geq \sqrt2 ~~~\forall n\geq 2\) 2) \(a_{n+1}\leq a_n\) (decreasing)

Once we prove this, we will conclude that \(\exists\lim_{n\to\infty}a_{n}=l\)

Recall: decreasing and bounded below \(\Rightarrow\) \(a_n\) convergent (\(\lim_{n\to\infty}a_n=inf\{a_n:n\in N\}\)​)

  1. Let \(n\in N\)

    \(a_{n+1}=\frac{a_n^2+2}{2a_n}\Rightarrow(a_n-\sqrt2)^2>0\) if \(a_n\neq \sqrt2\)

    \(\forall a_1>0,a_n>\sqrt2,~\forall n\in N\)

  2. Since \(a_n>\sqrt2~~\forall n\geq 2\), we have \(a_n^2>2~~\forall n\geq 2\)

    \(a_{n+1}=\frac{a_n^2+2}{2a_n}<\frac{a_n^2+a_n^2}{2a_n}=a_n\)

    Then, \(\exists l\in R|lim_{n\to\infty}a_n=l\) \((l>0)\)

    \(l=lim_{n\to\infty}a_{n+1}=lim_{n\to\infty}\frac{a_n^2+2}{2a_n}=\frac{l^2+2}{2l}\)

    Then \(l^2=2\Leftrightarrow l=\sqrt2\)

6.Series(infinite sums)

Consider a sequence \((a_n)_{n\in N}\) of real numbers

We defined another sequence \(S_1=a_1,S_2=a_1+a_2,S_3=a_1+a_2+a_3\)

\(S_n=a_1+a_2+a_3+...+a_n\)

We write \(\begin{aligned}&\sum_{k=1}^na_k&\end{aligned}\).\((S_n)_{n\in N}\) is the sequence of partial sums.

Definition: We say that the series defined by \((a_n)_{n\in N}\) is convergent if \(\lim_{n\to\infty}S_n\) exists

In that case, we write \(\begin{aligned}&\sum_{k=1}^{\infty}a_k=\lim_{n\to\infty}S_n=\lim_{n\to\infty}\sum_{k=1}^{\infty}a_k&\end{aligned}\)

Example

\(a_n=\frac{1}{2^n},S_n=\begin{aligned}&\sum_{k=1}^n\frac{1}{2^k}=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2^n}\rightarrow2&\end{aligned}\)conjecture: convergent

\(b_n=\frac{1}{n},S_n=\begin{aligned}&\sum_{k=1}^n\frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\rightarrow&\end{aligned}\)

Each group \(\geq \frac{1}{2}\). \(S_n = (1) + \left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \cdots\)

\(c_n=(-1)^n,S_n=\begin{aligned}&\sum_{k=1}^n(-1)^n=1-1+1-1+...+(-1)^n\rightarrow&\end{aligned}\)

\(d_n=\frac{1}{n^2},S_n=\begin{aligned}&\sum_{k=1}^n\frac{1}{k^2}=1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{n^2}\rightarrow&\end{aligned}\)

(\(\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}\)​)

The geometric series

\(a_n=r^n\) with \(|r|<1\)

Consider \(S_n=\sum_{k=0}^nr^k=1+r+r^2+r^3+...+r^n\)

\(rS_n=r+r^2+r^3+r^4+...+r^{n+1}\)

\(S_n-rS_n=1-r^{n+1}\Rightarrow S_n=\frac{1-r^{n+1}}{1-r}\)

Now, \(lim_{n\rightarrow \infty}\frac{1-r^{n+1}}{1-r}=\frac{1}{1-r}\) Since \(lim_{n\rightarrow \infty}r^{n+1}=0\)

We check that for any \(r\in (0,1)\), \(lim_{n\rightarrow \infty}r^{n}=0\)

Take \(\varepsilon>0\), N.T.P \(\exists n_0\in N|\forall n\geq n_0~~|r^n-0|<\varepsilon\)

\(log(|r|^n)<log(\varepsilon)\), then \(nlog(|r|)<log(\varepsilon)\)

\(n>\frac{log(\varepsilon)}{log(|r|)}\) pick \(n_0>\frac{log(\varepsilon)}{log(|r|)}\)

7.Complex number

Approach: include solutions to the equation \(x^2+1=0\)

Consider the set \(C=\{a+bi:a\in R,b\in R,i^2=-1\}\)

Example

\(z_1=3+2i,z_2=-1+3i\)

Definition: If \(z=a+bi\), \(Re(z)=a\), \(Im(z)=b\). Real part imaginary part imaginary unit

Geometrical representation: \(C\sim R\times R\)

image-20240902195737-ppvavgc

Remark: \(R\hookrightarrow C\)

Operations

Sum: \(z=a+bi,w=c+di\). \(z+w=a+c+(b+d)i\)

\(Re(z+w)=Re(z)+Re(w)\), \(Im(z+w)=Im(z)+Im(w)\)

Product: Use \(i^2=-1\),\(z=a+bi,w=c+di\)

\(z\cdot w=(a+bi)(c+di)=ac-bd+(ad+bc)i\)

Absolute value

\(z\in C,z=a+bi,|z|=\sqrt{a^2+b^2}\)

Conjugation: \(z\in C,z=a+bi\) we define \(\bar z=a-bi\)

Note that \(z\cdot \bar z=|z|^2\), \(|z|=z\Leftrightarrow z=0=0+0i\)

image-20240902195846-grc8aot

Inverse

Let \(z\in C\),\(z=a+bi\)

Define \(z^{-1}=\frac{\bar z}{|z|^2}\), then \(z\cdot z^{-1}=z\cdot \frac{\bar z}{|z|^2}=1\)

Polar form for complex numbers

Let \(z=a+bi.~~a,b\in R\)

We write \(z=rcos(\theta)+i\cdot rsin(\theta)=r(cos(\theta)+i\cdot sin(\theta))\) \(r=|z|,|cos(\theta)+i\cdot sin(\theta)|=1\)

Also: \(z=\sqrt2(cos(\frac{9\pi}{4})+isin(\frac{9\pi}{4}))\)

So, do not miss plus the \(2k\pi\)

image-20240902195921-jneimcl

Argument

Given \(z\in C\), we define \(arg(z)=\{\theta\in R|z=r(cos(\theta)+i\cdot sin(\theta))\}\)

\(z=1+i\), \(arg(z)=\{\frac{\pi}{4}+2k\pi:k\in Z\}\)

We call "Principal argument" to the unique \(\theta\in arg(z)|-\pi<\theta\leq \pi\)

Notation \(Arg(1+i)=\frac{\pi}{4}\)

image-20240902195953-ylsdm6t