Skip to content

8.26 Modular arithmetic

1.Primes

Recall the \(p\in\N\), \(p\geq 2\) is a "prime number" if \(Div_{\times}(p)=\{1,p\}\)

Proposition

Let \(p\) be a prime number, \(a,b\in\N\)

  1. \(p|a\cdot b\Rightarrow p|a\vee p|b\)

  2. If \(q_1,q_2,...,q_k\) are prime numbers, \(p|q_1,q_2...q_k\Rightarrow p=q_i\) for some \(1\leq i\leq k\)

Fundamental Theorem of Arithmetic=9=

Every natural number \(n\in N\) can be expressed as a unique product of prime numbers.

Namely, \(\exists q_1,q_2,...,q_r\) prime numbers, \(\alpha_1,\alpha_2,...,\alpha_r\in N_0\) such that \(m=q_1^{\alpha_1}q_2^{\alpha_2}......q_r^{\alpha_r}\)

Proof

Consider the set \(A=\{n\in\N,n\geq2,\text{n~cannot~be~written~as~a~product~of~primes}\}\)

We want to prove that \(A=\emptyset\). Suppose(to get a contradiction), that \(A\neq\emptyset\)

Since \(A\subseteq \N\), by WOP, there is a first element. Let put \(m=min(A)\in A\)

  • Can m be prime? No, m=m
  • Then m is not prime. Hence \(\exists m,k\in\N|m=n\cdot k, n,k\neq 1\)

Now observe that \(n<m,k<m\).

Then, \(n\notin A, k\notin A\Rightarrow \exists q_1...q_r\text{~primes~and~}p_1...p_r\text{~primes}\) such that \(m=nk=q_1...q_r\cdot p_1...p_r\). Contradiction!


Now, the uniqueness

Again, consider a set to apply WOP. \(B=\{m\in\N|\text{m~has~two~different~prime~factorizations}\}\)

If \(B\neq\emptyset\), there is a minimum \(n\in B\). Then \(n=p_1...p_r\) \(p_i\) prime for \(1\leq i\leq r\) and also \(n=q_1q_2...q_l\) \(q_i\) prime for \(1\leq i\leq l\)

Then \(p_1p_2p_3...p_r=q_1q_2q_3...q_l\). From here we deduce that \(p_1|q_1q_2...q_l\)

Then (by the property 2) from the proposition. There exists \(1\leq i\leq l\) such that \(p_1=q_i\) (Let's assume \(p_1=q_1\))

Then \(p_2p_3...p_r=q_2q_3...q_l\). Let's call \(m=p_2p_3...p_r\). Note that \(m<n\) and \(m\in B\). Contradiction!

2.Modular arithmetic

Remember the equivalence in \(Z\times Z\) for a fixed \(m\in\N\)

\(a,b\in\Z\), \(_aR_b\Leftrightarrow m|b-a\)

Equivalently: \(_aR_b\Leftrightarrow r_m(b)=r_m(a)\)

Definition

Let \(m>0\) be a fixed integer and let \(a,b\in\Z\).

We say that a is congruent to b module m, denote \(a\equiv b\)(mod m), if \(m|a-b\)

Notation:

\(r_m(a)\):remainder of \(a\) in the division by \(m\)

We write: \(a\equiv b(m)\Leftrightarrow m|b-a\)

We also write \(a\equiv b(mod~m)\)

Note that for \(m\in \N\), \(a\in\Z\)

\(r_m(a)\in\{0,1,2...m-1\}\)

The sum (mod m) is defined as:

\(r_m(r_m(a)+r_m(b))=a+b(mod~m)\)

The same with the product

\(a,b\in\{0,1,...,m-1\},a\cdot b\equiv r(a\cdot b)\)

Properties

\(a\equiv b(m)~and~c\equiv d(m)\) \(m\in\N\)

Prove that \(a+c\equiv b+d(m)\)

We know that \(m|b-a\Rightarrow b-a=m\cdot k\)

\(m|d-c\Rightarrow d-c=m\cdot q\)

\(b-a+d-c=mk+mq\)

\(b+d-(a+c)=m(k+q)\Rightarrow m|b+d-(a+c)\Rightarrow b+d\equiv a+c(m)\)

Similarly

  • \(a\equiv b(m)\) then \(a^n\equiv b^n(m)~\forall n\in\N\)

$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \cdots + ab^{n-2} + b^{n-1}) $​ * \(a\equiv b(m), c\equiv d(m)\Rightarrow ac\equiv bd(m)\)

\(\begin{aligned}\left\{\begin{array}{l}b - a = mk \quad \text{\textcircled{1}} \\d - c = mt \quad \text{\textcircled{2}}\end{array}\right.\end{aligned}\)

\(\text{\textcircled{1}} \cdot d + \text{\textcircled{2}} \cdot a\)

\(bd - ad + ad - ac = m(kd + ta)\)

\(bd - ac = m(kd + ta)\)

Example

Find the \(r_7(2^{1000})\)=

Note that 1000=3*333+1

Then \(2^{1000}=2^{3*333+1}=8^{333}*2\)

Now,(mod m)

\(8\equiv 1(7)\)

\(8^{333}\equiv 1(7)\)

\(2^{999}\equiv 1(7)\)

\(2^{1000}\equiv 2(7)\)

Example: \(a\in \Z,a\neq 1\)

Note: \(a-1|a-1\Rightarrow a\equiv 1(a-1)\)

Power \(n\in\Z\): \(a^n\equiv 1 (a-1)\)

Conclusion: \(a-1|a^n-1\)

Example:

Prove that for any odd number \(a\in \N\)

\(12|a^2+(a+2)^2+(a+4)^4+1=p(a)\)

We know that \(a=2k+1\) with \(k\in\N\)

We will prove that \(4|p(a)\wedge 3|p(a)\) \(\forall a\in\N\), a odd

Reminder tables

\(a\) \(a^2\) \((a+2)^2\) \((a+4)^4\) \(p(a)\)
0 0 1 1 0
1 1 0 1 0
2 1 1 0 0

Hence: \(3|p(a)\)

Now, with \(r_4(a)\)

\(a\) \(a^2\) \((a+2)^2\) \((a+4)^4\) \(p(a)\)
1 1 1 1 0
3 1 1 1 0

3.Rational numbers

\(Q=\{\frac{p}{q}:p,q\in\Z,q\neq0\}\)

\(Q=\{\frac{p}{q}:p,q\in\Z,q\neq0,(p:q)=1\}\)

We saw that: \(x\in\mathbb{Q}\), \(x=\frac{p}{q}\Leftrightarrow x\) has a finite or periodic decimal expansion

4.Decimal numbers

Consider objects of the form:

\(a=a_0.a_1a_2.....\) where \(a_0\in\N\), \(a_j\in\{0,1,2,3,4,5,6,7,8,9\}(digits)\)

Can be seen as an infinite sum: \(\begin{aligned}a=a_0+\frac{a_1}{10}+\frac{a_2}{100}+\frac{a_3}{1000}+......=\sum_{j=0}^{+\infty}a_j.10^{-j}\end{aligned}\)

Intuitive idea of infinite sum

We say that the decimal expression is

finite: if \(a=\pm a_0a_1a_2...a_n000000....~~~~a_j=0~~\forall j>n\)

infinite: if \(\forall n\in\N,~\exists j>n ~and~a_j\neq 0(Not ~all~equal~to~0)\)

periodic: if \(a=\pm a_0,a_1a_2a_3....a_nb_1b_2b_3...b_k~b_1b_2b_3...b_k~b_1b_2b_3...b_k...\)

we write \(a=\pm a_0,a_1a_2a_3....a_n \overline{b_1b_2b_3...b_k}\)

Proposition: If a is finite or periodic decimal, then \(a\in\mathbb{Q}\)

case 1: \(a=a_{0},a_{1}\cdots a_{m}\) finite decimal expansion

\(a=a_{0}+\frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\cdots+\frac{a_{m}}{10^{m}}\in Q\)

case 2: \(a=a_{0},a_{1}...a_{n}\overline{b_{1}...b_{k}}\)

\(b=a-a_{0}=0,a_{1}...a_{n}\overline{b_{1}...b_{k}}\)

\(10^{m}\cdot b=a_{1}a_{2}... a_{n},\overline{b_{1}\cdots b_{n}}\) \(a_1a_2...a_n\) is integer part

\(10^{m+k}b=a_{1}a_{2}...a_{n}b_{1}...b_{k},\overline{b_{1}...b_{k}}\)

\(10^{n+k}b-10^{n}b=a_{1}...a_{n}b_{1}...b_{k}-a_{1}a_{2}\cdots a_{n}=c\in N\)

\(10^{n}b(10^{k}-1)=c\)

\(a-a_{0}=b=\frac{c}{10^{n}(10^{k}-1)}\) \(a\in Q\)

Example

\(a=1,2\overline{34}\)

\(1000a=1234,\overline{34}\)

\(10a=12,\overline{34}\)

\(990a=1222\)

\(a=\frac{1222}{990}\)

image

Think about this: \(a\in\mathbb{Q}\Rightarrow a\) is a finite or period decimal

\(a=0.12345678910111213141516171819202122....\)

not finite non period