8.15 Function
1.Composition
Consider \(f:A\rightarrow B,g:B\rightarrow C\)
We may construct the function \(g\circ f:A\rightarrow C\) (the compostion of \(g\) with \(f\))(We read: g composes f)
Examples
If, \(f(x)=x^{3},g(x)=1+x,x\in \mathbb{R}\)
then, \((f\circ g)(x)=f(g(x))=f(1+x)=(1+x)^{3}\)
Also, \((f\circ g)(x)=f(g(x))=g(x)^{3}=(1+x)^{3}\)
In the reverse order, \((g\circ f)(x)=g(f(x))=1+f(x)=1+x^{3}\)
\((g\circ f)(x)=g(f(x))=g(x^3)=1+x^3\)
In general
Exercise
If, \(f(x)=\frac{1}{1-x},g(x)=(x-3)^{2}\). \(Dom(f)=\mathbb{R} \setminus \{1\},Dom(g)=\mathbb{R}\)
Then, \(f\circ g=f(g(x))=f((x-3)^{2})=\frac{1}{1-(x-3)^{2}}=\frac{1}{-x^{2}+6x-8}\)
Hence, \((x-3)^{2}\neq1,\quad x\neq2,4\)
So, \(Dom(f\circ g)=R\setminus \{2,4\}\)
Therefore
Similarly
2.Definition: \(f:A\rightarrow B\) a function
Easy explanation:
-
Injective
We say that \(f\) is INJECTIVE, \(if~f(a_{1})=f(a_{2})\Rightarrow a_{1}=a_{2}\), (\(f\) is not repeating values)
v2: \(if~ a_{1}\neq a_{2}\Rightarrow f(a_{1})\neq f(a_{2})\)
一个函数值对应唯一一个自变量
Geometric interpretation in the case \(f:\mathbb{R}\rightarrow \mathbb{R}\)
-
Surjective
\(\forall b\in B,\exists a\in A,f(a)=b\) A中可以有剩的
每个函数值都对应一些自变量
Geometric interpretation in the case \(f:\mathbb{R}\rightarrow \mathbb{R}\)
\[ Im(f)=Codom(f) \]
3.Invertible functions
Let \(f:A\rightarrow B\) be a function, we say that \(f\) is INVERTIBLE ,
If there exists a function \(g:B\rightarrow A\) such that \((g(f(a))=a)\cap (f(g(b))=b)\) (\(\forall a\in A,\forall b\in B\))
We call in this case \(g=f^{-1}\), \(f^{-1}\) is the inverse function of \(f\)
v2:!!!! \(g\circ f=id_x,~and~f\circ g=id_y\)
Example
To find the inverse: \(f:\mathbb{R}\to\mathbb{R},f(x)=3x+1\)
\(\begin{aligned} & y=f(x)=3x+1\\ & y-1=3x\\ & x=\frac{y-1}{3}\\ & f^{-1}(y)=\frac{y-1}{3}\\ & f^{-1}\left(f(x_{})\right)=f^{-1}(3x+1)=\frac{3x+1-1}{3}=x\\ & f(f^{-1}\left(y\right))=f(\frac{y-1}{3})=3\cdot\frac{y-1}{3}+1=y\end{aligned}\)
Another example
To find the inverse: \(f:\mathbb{R}\rightarrow \mathbb{R}, f(x)=x^{2}\)
Now, try to solve \(y=x^{2}~for~y\in\mathbb{R}\)
If \(y<0\Rightarrow\nexists x\in \mathbb{R}~|~y=x^{2}\)
If \(y>0\), the \(y=x^{2}\) has two solutions.
4.Discussion: Injectivity, surjectivity and inverse functions
- Define \(g:B\rightarrow A\) , \(f\) is injective, not surjective
\(g(b)=\begin{cases}a,&\mathrm{if~f(a)= b~(There~is~only~one~a)}\\any~a\in A,&\mathrm{if~b\notin Im(f)}\end{cases}\)
\(a\in A,g(f(a))=g(b)=a\), (left inverse of \(f\))
But \(f(g(b))=\begin{cases}b\in Im(f),&\mathrm{f(g(f(a)))=f(a)=b}\\b\notin Im(f),&\mathrm{f(g(b))=f(a)\neq b}\end{cases}\)
-
Define \(g:B\rightarrow A\), \(g(b)=a\in A\) \(\text{(any such that f(a)=b)}\)
\(f\) is surjective, but not injective
Checking inverse function properties
a) \(b\in B,f(g(b))=f(a)=b\). ok! (right inverse)
b) \(a\in A,g(f(a))=g(b)=a^{\prime}\neq a\)
~\(\forall b\in B,\exists a\in A~|~f(a)=b\)
~\(\exists a\neq a^{\prime}~|~f(a)=f(a^{\prime})\)
Remark
The essence of left inverse is that if there exists an element \(x\) in the left, then \(x\) maps to the right and becomes \(y\) by \(f\)
And then \(y\) can still go back to the left become \(x\) by \(g\).
This is called left inverse. The process of go and back will not go wrong or go to another element or be out of the domain or image
Similarly, Right inverse.
5.Bijective
if \(f\) is injective and surjective, \(f:A\rightarrow B\) is BIJECTIVE
Namely: \(f\) does not repeat values and covers the codomain (one to one correspondences)
6.Some remarks
Suppose: \(f:A\rightarrow B\) is injective but not surjective
Example 1
$f:\mathbb{R} \rightarrow \mathbb{R}, f(x)=e^{x},e^x\in(0,+\infty) $
If we restrict the codomain, we have an inverse \(f:\mathbb{R}\rightarrow \mathbb{R}_{>0},f(x)=e^{x}\), \(f\) is bijective
For every \(y\in(0,+\infty)\), there is \(x\in\mathbb{R}|e^{x}=y, x=\ln(y)\)
In general, for a function \(f:A\rightarrow B\), that is injective.
We have that \(f:A\rightarrow Im(f)\subset B\) is bijective
Example 2
\(f=\mathbb{R}\rightarrow \mathbb{R},~f(x)=x^{2}\)
Now \(f(x)=x^{2}\) is surjective from \(\mathbb{R}>\mathbb{R}_{\geq0}\)
We still have the problem of injectivity, we can restrict domain
\(f:\mathbb{R}_{\geq0}\rightarrow \mathbb{R}_{\geq0},~f(x)=x^{2}\)
\(y=x^2,~y\geq0\\x=\sqrt y,~x\geq0\\f^{-1}(y)=\sqrt y,~f^{-1}:\mathbb{R}_{\geq0}\rightarrow \mathbb{R}_{\geq0}\)
if \(f\) is constant we should restrict only one point.
7.More definitions
- \(f:X\rightarrow Y\) a function \(A\subseteq X\) . We define the image of \(A\) under of \(f\): \(f(A)=\{y\in Y/\exists x\in A: f(x)=y\}\subseteq Y\)
- \(B\subseteq Y\) The Pre-image of B under \(f\): \(f^{-1}(B)=\{x\in X,f(x)\in B\}\subseteq X\)
\(\begin{aligned}A & =\{x_1,x_2\},f(x)=\{y_1\}\\ B & =\{y_1,y_2,y_5\},f^{-1}(B)=\{x_1,x_2,x_4\}\\ C & =\{y_2,y_3\},f^{-1}(C)=\emptyset\end{aligned}\)
8.Functions and set operations
\(f:X\rightarrow Y\), A. B. subsets of \(X\). Prove that
Let \(y\in f(A\cap B)\), we need to prove that \(y\in f(A)\cap f(B)\)
Since \(y\in f(A\cap B)\), there is \(x\in A\cap B/f(x)= y\). Then \(y\in f(A),y\in f(B)\Rightarrow y\in f(A)\cap f(B)\)
Sometimes
\(f(A\cap B)\subsetneq f(A)\cap f(B)\)
\(f=\mathbb{R}\rightarrow \mathbb{R},~f(x)=x^{2}\)
\(A=[-1,0],~B=[0,1],~A\cap B=\{0\}\)
Then, Warn‼️: the image of a function should be a set
\(\begin{aligned}&f(A\cap B)=f(\{0\})=\{f(0)\}=\{0\}\\&f(A)=\{ y\in\mathbb{R},y=f(x)~with~ x\in[-2,0]\}=[0,1]\\&f(B)=[0,1]\\&f(A)\cap f(B)=[0,1]\\&\{0\}\subsetneq[0,1]\end{aligned}\)
Exercise=9=
Prove:
\(\bullet\ f~injective\Rightarrow f(A\cap B)=f(A)\cap f(B)\) (没有任意符号因为f出现意味着已经出现了定义域)
\(\bullet\forall A,\forall B,f(A\cap B)=f(A)\cap f(B)\Rightarrow f~injective\)
Strategy: Start from definition
- Suppose \(f\) is injective, let's prove that \(f(A\cap B)\supseteq f(A)\cap f(B)\)
Analyse:
\(f\) is injective told us: we need to integrate the form like \(f(x_1)=f(x_2),~x_1=x_2\) into the proof.
\(f(A\cap B)\supseteq f(A)\cap f(B)\) told us: we need to pick specific element like x instead of set A.
Let pick \(x_{1}\in A/f(x_{1})=y~~~and~~~x_{2}\in B/f(x_{2})=y\), thus \(y\in f(A)\cap f(B)\)
So, \(f(x_{1})=y=f(x_{2})\). Then Since \(x_{1}=x_{2}\),
Hence \(~x_{1}\in A,~x_{2}=x_{1}\in A\\x_{2}\in B,~x_{1}=x_{2}\in B\)
Let's put $x=x_1=x_2,~x\in(A\cap B) $
Therefore, \(y=f(x)\in f(A\cap B)\)
- Suppose \(f(A\cap B)= f(A)\cap f(B)\), we need to prove \(f\) is injective.
Namely, If \(f(x_{1})=f(x_{2})\Rightarrow x_{1}=x_{2}\), We know that \(f(x_{1})=f(x_{2})= y\in Y\)
Put \(A=\{x_{1}\},B=\{x_{2}\}\)
By hypothesis, \(f(A\cap B)=f(A)\cap f(B)=\{f(x_1)\}\cap\{f(x_2)\}=\{y\}\neq e\), and \(f(A\cap B)=f(A)\cap f(B)=f(\{x_{1}\}\cap\{x_{2}\})\Rightarrow x_{1}=x_{2}\)