Skip to content

8.14 Sets

1.Sets

A set is a well defined collection of elements

2.Empty set

\(\emptyset\) defined by proposition \(x\in\emptyset\) is false

Remark

\(\emptyset\subseteq A\) for ant set A

We need to prove that \(x\in\emptyset\Rightarrow x\in A\) is true

Suppose that \(\emptyset\nsubseteq A\), that means \(\exists x\in\emptyset:x\notin A\)

Contradiction!!!

3.Belonging

We say that the element \(x\) belongs that set A and write \(x \in A\)

4.Subset

Given that sets A and B, we say that A is a subset of B and write \(A\subseteq B\), if the proposition \((x \in A)\Rightarrow(x \in B)\) is true

Notation:

\(A\subseteq B\) : A is included in B or equal to B

\(A\subsetneq B:\forall x(x\in A\Rightarrow x\in B),\mathrm{but~}\exists y\in B:y\notin A\) (strict inclusion). A is strictly included in B

\(A \nsubseteq B\): A is not included in B. \(\exists a\in A:a\notin B\)

5.Universal Set

In general, we will consider that all sets are in same universal set \(x\), we will write definitions of the form

\[ A=\{x\in X:p(x)\} \]

Example

\(A=\{m\in \mathbb{N}:\sqrt{m}\in \mathbb{N}\}=\{1,4,9\ldots\}=\{k^{2}:k\in \mathbb{N}\}\)

6.Sets operations

A,B sets

Union

\({A\cup B}\) is a set defined by the condition:

\[ \begin{aligned}&x\in A\cup B\Longleftrightarrow x\in A\vee x\in B\\&A\cup B=\{x\in X:x\in A\vee x\in B\}\end{aligned} \]

Intersection

\[ A\cap B=\{x\in X:x\in A\wedge x\in B\} \]

Disjoint sets

We say that A and B are disjoint if \(A\cap B=\emptyset\)

Relative complement

The difference \(A\setminus B=\{x\mid x\in A\mathrm:x\notin B\}\) (different sets)

Also denoted by \(A-B\)

Complement

In the cases of having some universal set \(x\), we define for any \(A\subseteq X\)

The complement \(A^{C}=\{x\in X:x\notin A\}\)

Remark

To prove (in general) that \(A = B\) for the given sets, we prove two things \(A\subseteq B\cap B\subseteq A\)

Exercise

Prove \((A^{C})^{C}=A\)

  1. \((A^{C})^{C}\subseteq A\)

    Pick \(x\in(A^{C})^{C}\Leftrightarrow x\notin A^{C}\Leftrightarrow x\in A\)

  2. \((A^{C})^{C} \supseteq A\)

    Pick \(x\in A\Leftrightarrow x\notin A^C\Leftrightarrow x\in(A^{C})^{C}\)

7.De Morgan's Laws

A,B sets we have

\[ \begin{aligned}(1)(A\cup B)^{C}&=A^{C}\cap B^{C}\\(2)(A\cap B)^{C}&=A^{C}\cup B^{C}\end{aligned} \]

\(\subseteq)~x\in (A\cup B)^{C}\Leftrightarrow x\notin(A\cup B)\Leftrightarrow x\notin A\cap x\notin B \Leftrightarrow x\in A^{C}\cap x\in B^{C} \Leftrightarrow x\in A^{C}\cap B^{C}\)

\(\supseteq)~x\in A^{C}\cap B^{C}\Leftrightarrow x\in A^{C}\cap x\in B^{C} \Leftrightarrow x\notin A~\cap~x\notin B\Leftrightarrow x\in(A\cup B)^{C}\)

8.Power set

Given a set A, we define the power set as

\[ \wp \]

(or the set of "parts of b)

\(\wp(A)=\{B \subseteq X:B \subseteq A\}=\{all~subsets~of~A\}\)

Example

\(A=\{a,b,c\}\). Then \(\wp(x)=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}\)

Claim

If A is a set of m elements \(m \in\mathbb {N}\), the power set \(\wp(A)\) has \(2^m\) elements.

9.Cartesian product

A, B sets, we define

\[ A\times B=\{(a,b):a\in A\cap b\in B\} \]

(a,b) is ordered pair

Note that \(A\times B~and~B\times A\) may be different!!

Example

\(A=\{1,2\}B=\{3,4,5\}\\A\times B=\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)\}\\B\times A=\{(3,1),(3,2),(4,1),(4,2),(5,1),(5,2)\}\)

image

image

10.Functions

Consider the sets \(A\) and \(B\)

V1: A function \(f:A\rightarrow B\) is a rule to assign, to every element from A, one element (only one) from B

V2: Let A, B be sets. A function \(f:A\rightarrow B\) can be identified with a set \(R\subset A\times B\) such that \(\forall a\in A, \exist~!~b\in B/(a,b)\in R\)

\(\exist~!\) :there exists a unique one

image

We write \(f(a_{1})=b_{4},~f(a_{2})=b_{1},~f(a_{4})=b_{1},~f(a_{3})=b_{5}\)

Conditions: for every \(a \in A\), there is only one \(b \in B\) such that \(f(a)=b\)

  • We say that "\(f\) maps \(a\) to \(b\)"
  • We call \(A\) the domain of the function \(f\) and write \(dom(f)=A\)
  • \(B\) is the codomain of \(f\), \(codom(f)=B\)
  • If \(f(a)=b\), we say that \(b\) is the image of \(a\) when applying \(f\)

Remark

If \(f=A\rightarrow B\), the ordered pair \((a,f(a))\in A\times B,\forall a\in A\)

Example

\(A=\{1,2,3,4,5\}, B=\mathbb{N}\)

Consider \(f=A\rightarrow B\) given by the formula \(f(m)=m+1\), \(g(m)=(m-2)^{2}+1\)​​​

\(m\) \(f(m)\) \(g(m)\)
1 2 2
2 3 1
3 4 2
4 5 5
5 6 10

image

More definition

Let: \(f:A\rightarrow B\) a function

The Range of \(f\) is defined as \(Ran(f)=\{b\in B:\exists a\in A,f(a)=b\}\)

Note

we also call this set the IMAGE of \(f\)(all possible collection of values), \(\mathrm{Im}(f)=\{b\in B:\exists a\in A,f(a)=b\}\)

Example

\(f:\mathbb{R}\rightarrow\mathbb{R},~f(x)=x^{2}\), \(g:\mathbb{N}\to\mathbb{R},~g(m)=m^2\)

not same \(f\), but same formula.(domain and codomain should be same)

image

\(f(x)=\frac{1}{1-x}\), \(f(x)\)exists at any \(x \in \mathbb{R}\setminus \{1\}\)

Natural domain of this formula is \(\mathbb{R}\setminus\{1\}\) NATURAL DOMAIN是定义域能够取到的的最大范围

\[ log=ln \]