Skip to content

w3

  1. True or false? Use the axioms of \(\mathbb{R}\) to determine the truth or falsehood of the following statements.

    (a) \(-\left( -\left( \sqrt{2} + \sqrt{2^{-1}} - 1 \right) + \frac{1 - \sqrt{2}}{\sqrt{2}} \right) \in \mathbb{Q}\).

    \(= - \left( - \sqrt{2} - \frac{\sqrt{2}}{3} + 1 + \frac{\sqrt{2} - 2}{3} \right)\)

    \(= \sqrt{2} + \frac{\sqrt{2}}{3} - 1 - \frac{\sqrt{2}}{3} + 1\)

    \(= \sqrt{2} \notin \mathbb{Q}\)

    Since \(\sqrt{2} \notin \mathbb{Q}\), then the statement is false.

    (b) If \(a, b \in \mathbb{R}\) satisfy \(a^2 = b^2\), then \(a = b\).

    Since \(a^2 = b^2\), then \(a^2 - b^2 = 0\).

    \((a + b)(a - b) = 0\).

    \(a = b \, \text{or} \, a = -b\).

    Therefore, the statement is false.

    (c) If \(a, b \in \mathbb{R}\) satisfy \(a^2 = b^2\), then \(a^3 = b^3\).

    Since \(a^2 = b^2\), then \(a = \pm b\).

    Thus, \(a^3 = (\pm b)^3\), then \(a^3 = \pm b^3\).

    Therefore, the statement is false.

    (d) There is no real number \(T\) such that \(T^2 - 1\) is negative and \(2T > 1\).

    Since \(T^2 - 1 < 0\), then \(-1 < T < 1\).

    Since \(T > \frac{1}{2}\), then \(\frac{1}{2} < T < 1\).

    However, \(\exists T \in \left( \frac{1}{2}, 1 \right)\) such that \(T^2 - 1 < 0\) and \(2T > 1\).

    Then \(T\) can be a real number.

    Hence, the statement is false.

  2. Find the fractions whose decimal representations are:

    (a) \(0.\overline{23}\)

    Let \(0.\overline{23} = a\)

    \(100a = 23.\overline{23}\)

    \(10000a = 2323.\overline{23}\)

    \(10000a - 100a = 2323.\overline{23} - 23.\overline{23}\)

    \(9900a = 2300\)

    \(a = \frac{2300}{9900} = \frac{23}{99}\)

    (b) \(2.2\overline{83}\)

    Let \(2.2\overline{83} = a\)

    \(1000a = 2283.\overline{83}\)

    \(10a = 22.\overline{83}\)

    \(1000a - 10a = 2283.\overline{83} - 22.\overline{83}\)

    \(990a = 2261\)

    \(a = \frac{2261}{990}\)

  3. Compute the sum \(\begin{aligned}\sum_{n \in \mathbb{N}} \frac{3^n + 5^n}{7^{n+1}}\end{aligned}\)

    \[ \begin{aligned} &= \sum_{n \in \mathbb{N}} \frac{3^n}{7^{n+1}} + \sum_{n \in \mathbb{N}} \frac{5^n}{7^{n+1}} \\ &= \left( \frac{3^1}{7^2} + \frac{3^2}{7^3} + \dots + \frac{3^n}{7^{n+1}} \right) + \left( \frac{5^1}{7^2} + \frac{5^2}{7^3} + \dots + \frac{5^n}{7^{n+1}} \right) \\ &= \frac{\frac{3^1}{7^2} \left( 1 - (\frac{3}{7})^n \right)}{1 - \frac{3}{7}} + \frac{\frac{5^1}{7^2} \left( 1 - (\frac{5}{7})^n \right)}{1 - \frac{5}{7}} \\ &= \frac{\frac{3}{7} - \frac{3^{n+1}}{7^{n+1}}}{4} + \frac{\frac{5}{7} - \frac{5^{n+1}}{7^{n+1}}}{2} \\ &= \frac{3}{4 \times 7} - \frac{3^{n+1}}{4 \times 7^{n+1}} + \frac{5}{2 \times 7} - \frac{5^{n+1}}{2 \times 7^{n+1}} \\ &= \frac{26}{2 \times 4 \times 7} - \frac{2\times3^{n+1} + 4 \times 5^{n+1}}{2 \times 4 \times 7^{n+1}} \\ &= \frac{13}{28} - \frac{3^{n+1}}{4 \times 7^{n+1}} - \frac{5^{n+1}}{2 \times 7^{n+1}} \\ &= \frac{13}{28} - \frac{1}{4 \times \left( \frac{7}{3} \right)^{n+1}} - \frac{1}{2 \times \left( \frac{7}{5} \right)^{n+1}} \end{aligned} \]

    When \(n \to \infty\), \(\left( \frac{7}{3} \right)^{n+1}\) and \(\left( \frac{7}{5} \right)^{n+1} \to \infty\)

    Then \(\frac{1}{4 \times \left( \frac{7}{3} \right)^{n+1}}\) and \(\frac{1}{2 \times \left( \frac{7}{5} \right)^{n+1}} \to 0\)

    Thus the sum is \(\frac{13}{28}\)

  4. Use the arithmetic mean-geometric mean inequality\(^1\) to prove that, with the \(n + 1\) positive numbers
    \(1, 1 + \frac{1}{n}, 1 + \frac{1}{n}, \dots, 1 + \frac{1}{n}\), we have that, for any positive integer \(n\), \(\left( 1 + \frac{1}{n} \right)^n \leq \left( 1 + \frac{1}{n+1} \right)^{n+1}.\)

    Using AM-GM inequality

    \(\frac{1+1+\frac{1}{n}+\cdots+1+\frac{1}{n}}{n+1}>\sqrt[n+1]{\left(1+\frac{1}{n})\cdot\left(1+\frac{1}{n}\right)\cdots\left(1+\frac{1}{n}\right)\right)}\)

    \(\frac{n+1 + 1}{n+1} > \sqrt[n+1]{\left( 1 + \frac{1}{n} \right)^n}\)

    \(\left( 1 + \frac{1}{n+1} \right)^{n+1} \geq \left( 1 + \frac{1}{n} \right)^n\)

    Thus \(\left( 1 + \frac{1}{n} \right)^n \leq \left( 1 + \frac{1}{n+1} \right)^{n+1}\)

    But \(1 \neq 1 + \frac{1}{n}, (n > 0)\), then \(\left( 1 + \frac{1}{n} \right)^n < \left( 1 + \frac{1}{n+1} \right)^{n+1}\)

  5. Prove that \(\left( \left( 1 + \frac{1}{n} \right)^n \right)_{n \in \mathbb{N}}\) is a bounded sequence. Hint: you may use the binomial theorem.

    $$ \begin{aligned} &\left(1 + \frac{1}{n}\right)^n ,n\rightarrow\infty\ &= C_n^0 \left( \frac{1}{n} \right)^0 + C_n^1 \left( \frac{1}{n} \right)^1 + C_n^2 \left( \frac{1}{n} \right)^2 + \cdots + C_n^n \left( \frac{1}{n} \right)^n + \cdots \

    &= 1 + \frac{n!}{(n-1)! 1!} \cdot \frac{1}{n} + \frac{n!}{2!(n-2)!} \cdot \frac{1}{n^2} + \cdots + \frac{n!}{n!} \left( \frac{1}{n} \right)^n + \cdots \

    &= 1 + 1 + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^3} + \cdots + \frac{1}{n^n} + \cdots \

    &< 1 + 1 + \frac{n^2}{2!} \cdot \frac{1}{n^2} + \frac{n^3}{3!} \cdot \frac{1}{n^3} + \cdots + \frac{n^n}{n!} \cdot \frac{1}{n^n} + \cdots \

    &= 2 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} + \cdots \

    &= 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} + \cdots \

    &< 1 + 1 + \frac{1}{2^1} + \frac{1}{2^2} + \cdots + \frac{1}{2^{n-1}} + \cdots \

    &= 2 + \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 3 \end{aligned} $$