
Summer Preparatory Course MCS

Week 2

Practice Exercises

August 23, 2024

1. By constructing an injection from N so X show that each of the following sets is infinite:

(i) Z.

(ii) {x ∈ Z : x < 0}.

(iii) {n ∈ N : n ≥ 106}.

2. Prove that the function f : N → Z defined by

f(n) =

{
n
2 if n is even,

−n−1
2 if n is odd,

is a bijection.

3. Let X be a non-empty subset of Z which has no least member. Show that we can choose a sequence
x1, x2, . . . , xn, . . . of distinct members of X such that xn < xn−1 for all n ∈ N. Deduce that X is
infinite.

4. In the lectures, it’s been seen that it may happen that Y ⊊ X while |X| = |Y |. Show that this is not
possible if X is finite.

5. Prove that given any integer n ≥ 1, there exists an odd integer m and integer k ≥ 0 such that n = 2km.

6. Find d = gcd(234, 63) and write it as a linear combination of 234 and 63.

7. Let A1 and A2 be two disjoint finite sets. Then |A1 ∪A2| = |A1|+ |A2|.

8. Let n ∈ N. Let A1, A2, . . . An be n pairwise disjoint finite sets. Then |A1 ∪ A2 ∪ · · · ∪ An| = |A1| +
|A2|+ · · ·+ |An|.

9. Let A1 and A2 be two finite sets. Then |A1 ×A2| = |A1| · |A2|.

10. If X and Y are infinite countable and disjoint sets, then X ∪ Y is countable.

11. Let X be an infinite countable set and let Y be a finite set with empty intersection. Then X ∪ Y is
countable.

12. Let X be a countable set and let Y be a countable set. Then X ∪ Y is countable.

13. Let n ∈ N. If X1, X2, . . . Xn are countable sets. Then
⋃n

i=1 Xi is countable.

14. On the cartesian product of finite sets:

(a) Let A and B be two finite sets with |A| = m and |B| = n. Prove that A×B is finite and moreover

|A×B| = m · n = |A| · |B|.

(b) Let A1, A2, . . . , An be a finite collection of finite sets. Prove by induction (use item (a)) that the
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cartesian product A1 ×A2 × · · · ×An is finite and moreover

|A1 ×A2 × · · · ×An| = |A1| · |A2| · · · · · |An|.

[Hint: You may use the result on cardinality of the finite union of finite sets.]

15. Let (Ai)i∈N be any sequence of nonempty finite sets. Is their cartesian product, A1 × A2 × A3 × · · · ,
countable?1 Justify your answer.

16. (The Hanoi tower problem) There are three poles, and on one of them are n discs of different sizes,
stacked in order of size with the largest at the bottom. The task is to move the stack to another pole,
subject to the following rules:

(a) Only one disc may be moved at a time.

(b) A disc may never be placed on top of a smaller one.

How many moves are needed to transfer the stack to another pole? Guess the answer and prove it by
induction.

17. Prove that 11n − 6 is divisible by 5 for all positive integer n.

18. Prove that
1/2 + 1/4 + 1/8 + · · ·+ 1/2n = 1− 1/2n

for any positive integer n.

19. Write the first five terms of each of the following sequences:

(a) an = 2n

(b) an = (−1)n+1n2

(c) an = 1
n sin(nπ

2 )

(d) an =
√
n

n+1

(e) an = 2n−1

(2n−1)3

(f) an = 2an−1, with a0 = 3

(g) an = 3an−2, with a0 = 1 and a1 = 3

(h) an = a2n−1, with a0 = π

20. Prove that for any n ∈ N>0, 6
n − 1 is divisible by 5.

21. Prove that ∀n ∈ N :

n∑
i=1

(2i− 1) = n2 by using the Gauss’s sum and by the inductive method.

22. Prove that ∀n ∈ N we have

(a)

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
(b)

n∑
i=1

i3 =
n2(n+ 1)2

4

23. Prove that ∀n ∈ N we have

(a)

n∑
i=1

(−1)i+1i2 = (−1)n+1n(n+ 1)

2

(b)

n∑
i=1

(2i+ 1) 3i−1 = n3n

(c)

n∏
i=1

(
1 + a2

i−1
)
=

1− a2
n

1− a
, a ∈ R \ 1

1Recall that A1 ×A2 ×A3 × · · · is the set of sequences (ai)i∈N with ai ∈ Ai for all i ∈ N



24. (a) Let (an)n∈N be sequence of real numbers. Prove that

n∑
i=1

(ai+1 − ai) = an+1 − a1

(b) Compute

n∑
i=1

1

i (i+ 1)

(c) Compute

n∑
i=1

1

(2i− 1) (2i+ 1)

25. Prove that the following inequalities are valid ∀n ∈ N

(a) 3n + 5n ≥ 2n+2

(b) 3n ≥ n3

(c)
n∑

i=1

n+ i

i+ 1
≤ 1 + n (n− 1)

(d)

2n∑
i=n

i

2i
≤ n

(e)

2n∑
i=1

1

2i− 1
>

n+ 3

4

(f)

n∑
i=1

1

i!
≤ 2− 1

2n−1

(g)

n∏
i=1

4i− 1

n+ i
≥ 1

26. Prove that

(a) n! ≥ 3n−1, ∀n ≥ 5

(b) 3n − 2n > n3, ∀n ≥ 4

(c)

n∑
i=1

3i

i!
< 6n− 5, ∀n ≥ 3

27. Let (an)n∈N be the sequence of real numbers defined recursively as

a1 = 2, an+1 = 2nan + 2n+1n!, ∀n ∈ N

Prove that an = 2nn!.

28. Let (an)n∈N be the sequence of real numbers defined recursively as

a1 = 0 an+1 = an + n (3n+ 1) , ∀n ∈ N

Prove that an = n2 (n− 1).

29. Prove that any natural number n can be written as a sum of distinct powers of 2 (including 20 = 1).

30. Let nk be the number of ways to select a pair of elements out of a set of k elements. Give a recursive
formula for nk.

31. Use induction to show that

a+ ar + ar2 + · · ·+ arn = a

(
rn+1

r − 1

)
for r ̸= 1 and for all n ≥ 0.

32. Use strong induction to show that if the sequence an is defined recursively by

a1 = 3, a2 = 5 and an = 3an−1 − 2an−2 for n ≥ 3

then an = 2n + 1 for every n ∈ N.



33. (Exercise 3, from Biggs 1.1) Prove that if any two integers a and b are given, then there is an integer
c such that (a+ b)c = a2 − b2.

34. (Exercise 2, from Biggs 1.2) Show that 0 ≤ x2 for any x in Z, and deduce that 0 ≤ 1.

35. (Exercise 3, from Biggs 1.2) Deduce from the previous exercise that n ≤ n+ 1 for all n ∈ Z.

36. (Exercise 2, from Biggs 1.3) Give a recursive definition of the “n-th power” 2n for all n ≥ 1.

37. Show that if n ≥ 2 and n is not prime then there is a prime p such that p|n and p2 ≤ n.

38. Prove that 467 is prime.

39. Divide ±25 by ±3 using the Euclidean algorithm.

40. Let m ∈ N. Show that m · n ≥ m for all n ∈ N.

[Hint: use induction on n.]

As a consequence, given m,n ∈ N, if m · n = 1 then m = n = 1.

41. Show that 42n − 1 is divisible by 15 for all n ∈ N.

42. Show that if a and b are integers such that ab = 1 then a = b = 1 or a = b = −1.

[Hint: either both a and b are positive or both are negative.]

Deduce that if x and y are integers such that x|y and y|x then x = ±y. In particular, if x divides 1
then x = ±1.

43. We know that the order relation “≤” on Z satisfies certain axioms, which are the following:

(i) a ≤ a for all a ∈ Z. (Reflexivity)

(ii) If a ≤ b and b ≤ a, then a = b for any a, b ∈ Z. (Antisymmetry)

(iii) If a ≤ b and b ≤ c, then a ≤ c, for any a, b, c ∈ Z. (Transitivity)

In general, given a set X and a relation ∼ on X, we say that ∼ is an order relation if it satisfies the
following axioms:

(i) a ∼ a for all a ∈ X. (Reflexivity)

(ii) If a ∼ b and b ∼ a, then a = b for any a, b ∈ X. (Antisymmetry)

(iii) If a ∼ b and b ∼ c, then a ∼ c, for any a, b, c ∈ X. (Transitivity)

Prove that the divisibility relation “|” on N is an order relation.

44. If c|a and c|b, then c|xa+ yb for any x, y ∈ Z. Prove this fact.

45. Let a, b ∈ Z. Given n ∈ N, then n|(b− a) if and only if the remainder of a divided by n is the same as
the remainder of b divided by n. That is, if the difference between a and b is a multiple a and b share
the same remainder when divided by n, and vice versa.

46. Let a and b be positive integers and let d = gcd(a, b). Prove that there are integers x and y for which
ax+ by = c if and only if d|c.



47. Find the greatest common divisor of a = 1320 and b = 714 and express the result in the form ax+ by
for some x, y ∈ Z.

48. Show that in any set of 12 integers there are two whose difference is divisible by 11.

49. Show that 725 and 441 are coprime and find integers x and y such that 725x+ 441y = 1.

50. Let d = gcd(a, b). Which are the possible values for gcd(a + b, 2b − a)? Give examples in which
gcd(a+ b, 2b− a) equals each of these possibilities.

51. Prove the following properties of the greatest common divisor:

(a) If m ∈ N then gcd(ma,mb) = m · gcd(a, b).

(b) If gcd(a, x) = d and gcd(b, x) = 1 then gcd(ab, x) = d.

52. If p and p′ are distinct primes, prove that p does not divide p′.

53. Let x, y ∈ Z. Prove that if x2 + y2 is divisible by 3 then x and y are both divisible by 3.

54. Prove that there are no integers x, y, z, t ∈ Z for which x2+ y2− 3z2− 3t2 = 0 unless all of them are 0.


