

Practice Exercises

August 23, 2024

- 1. By constructing an injection from \mathbb{N} so X show that each of the following sets is infinite:
 - (i) Z.
 - (ii) $\{x \in \mathbb{Z} : x < 0\}.$
 - (iii) $\{n \in \mathbb{N} : n \ge 10^6\}.$
- 2. Prove that the function $f : \mathbb{N} \to \mathbb{Z}$ defined by

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ -\frac{n-1}{2} & \text{if } n \text{ is odd,} \end{cases}$$

is a bijection.

- 3. Let X be a non-empty subset of \mathbb{Z} which has no least member. Show that we can choose a sequence $x_1, x_2, \ldots, x_n, \ldots$ of distinct members of X such that $x_n < x_{n-1}$ for all $n \in \mathbb{N}$. Deduce that X is infinite.
- 4. In the lectures, it's been seen that it may happen that $Y \subsetneq X$ while |X| = |Y|. Show that this is not possible if X is finite.
- 5. Prove that given any integer $n \ge 1$, there exists an odd integer m and integer $k \ge 0$ such that $n = 2^k m$.
- 6. Find $d = \gcd(234, 63)$ and write it as a linear combination of 234 and 63.
- 7. Let A_1 and A_2 be two disjoint finite sets. Then $|A_1 \cup A_2| = |A_1| + |A_2|$.
- 8. Let $n \in \mathbb{N}$. Let A_1, A_2, \ldots, A_n be *n* pairwise disjoint finite sets. Then $|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|$.
- 9. Let A_1 and A_2 be two finite sets. Then $|A_1 \times A_2| = |A_1| \cdot |A_2|$.
- 10. If X and Y are infinite countable and disjoint sets, then $X \cup Y$ is countable.
- 11. Let X be an infinite countable set and let Y be a finite set with empty intersection. Then $X \cup Y$ is countable.
- 12. Let X be a countable set and let Y be a countable set. Then $X \cup Y$ is countable.
- 13. Let $n \in \mathbb{N}$. If X_1, X_2, \ldots, X_n are countable sets. Then $\bigcup_{i=1}^n X_i$ is countable.
- 14. On the cartesian product of finite sets:

(a) Let A and B be two finite sets with |A| = m and |B| = n. Prove that $A \times B$ is finite and moreover $|A \times B| = m \cdot n = |A| \cdot |B|.$

(b) Let A_1, A_2, \ldots, A_n be a finite collection of finite sets. Prove by induction (use item (a)) that the

cartesian product $A_1 \times A_2 \times \cdots \times A_n$ is finite and moreover

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \cdot |A_2| \cdot \cdots \cdot |A_n|.$$

[Hint: You may use the result on cardinality of the finite union of finite sets.]

- 15. Let $(A_i)_{i \in \mathbb{N}}$ be any sequence of nonempty finite sets. Is their cartesian product, $A_1 \times A_2 \times A_3 \times \cdots$, countable?¹ Justify your answer.
- 16. (The Hanoi tower problem) There are three poles, and on one of them are n discs of different sizes, stacked in order of size with the largest at the bottom. The task is to move the stack to another pole, subject to the following rules:
 - (a) Only one disc may be moved at a time.
 - (b) A disc may never be placed on top of a smaller one.

How many moves are needed to transfer the stack to another pole? Guess the answer and prove it by induction.

- 17. Prove that $11^n 6$ is divisible by 5 for all positive integer n.
- 18. Prove that

$$1/2 + 1/4 + 1/8 + \dots + 1/2^n = 1 - 1/2^n$$

for any positive integer n.

- 19. Write the first five terms of each of the following sequences:
 - (a) $a_n = 2n$ (b) $a_n = (-1)^{n+1}n^2$ (c) $a_n = \frac{1}{n}\sin(n\frac{\pi}{2})$ (d) $a_n = \frac{\sqrt{n}}{n+1}$ (e) $a_n = \frac{2^{n-1}}{(2n-1)^3}$ (f) $a_n = 2a_{n-1}$, with $a_0 = 3$ (g) $a_n = 3a_{n-2}$, with $a_0 = 1$ and $a_1 = 3$ (h) $a_n = a_{n-1}^2$, with $a_0 = \pi$
- 20. Prove that for any $n \in \mathbb{N}_{>0}$, $6^n 1$ is divisible by 5.
- 21. Prove that $\forall n \in \mathbb{N} : \sum_{i=1}^{n} (2i-1) = n^2$ by using the Gauss's sum and by the inductive method.
- 22. Prove that $\forall n \in \mathbb{N}$ we have

(a)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
 (b) $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$

23. Prove that $\forall n \in \mathbb{N}$ we have

(a)
$$\sum_{i=1}^{n} (-1)^{i+1} i^2 = (-1)^{n+1} \frac{n(n+1)}{2}$$
 (c) $\prod_{i=1}^{n} \left(1 + a^{2^{i-1}}\right) = \frac{1 - a^{2^n}}{1 - a}, a \in \mathbb{R} \setminus 1$

(b) $\sum_{i=1}^{n} (2i+1) 3^{i-1} = n 3^n$ ¹Recall that $A_1 \times A_2 \times A_3 \times \cdots$ is the set of sequences $(a_i)_{i \in \mathbb{N}}$ with $a_i \in A_i$ for all $i \in \mathbb{N}$ 24. (a) Let $(a_n)_{n \in \mathbb{N}}$ be sequence of real numbers. Prove that $\sum_{i=1}^{n} (a_{i+1} - a_i) = a_{n+1} - a_1$

(b) Compute
$$\sum_{i=1}^{n} \frac{1}{i(i+1)}$$

(c) Compute $\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)}$

25. Prove that the following inequalities are valid $\forall n \in \mathbb{N}$

- (a) $3^{n} + 5^{n} \ge 2^{n+2}$ (b) $3^{n} \ge n^{3}$ (c) $\sum_{i=1}^{n} \frac{n+i}{i+1} \le 1+n (n-1)$ (d) $\sum_{i=n}^{2^{n}} \frac{i}{2^{i}} \le n$ (e) $\sum_{i=1}^{2^{n}} \frac{1}{2^{i}-1} > \frac{n+3}{4}$ (f) $\sum_{i=1}^{n} \frac{1}{i!} \le 2 - \frac{1}{2^{n-1}}$ (g) $\prod_{i=1}^{n} \frac{4i-1}{n+i} \ge 1$
- 26. Prove that

(a)
$$n! \ge 3^{n-1}, \quad \forall n \ge 5$$

(b) $3^n - 2^n > n^3, \quad \forall n \ge 4$
(c) $\sum_{i=1}^n \frac{3^i}{i!} < 6n - 5, \quad \forall n \ge 3$

27. Let $(a_n)_{n\in\mathbb{N}}$ be the sequence of real numbers defined recursively as

 $a_1 = 2, \qquad a_{n+1} = 2na_n + 2^{n+1}n!, \quad \forall n \in \mathbb{N}$

Prove that $a_n = 2^n n!$.

28. Let $(a_n)_{n\in\mathbb{N}}$ be the sequence of real numbers defined recursively as

$$a_1 = 0 \qquad a_{n+1} = a_n + n \left(3n + 1\right), \quad \forall n \in \mathbb{N}$$

Prove that $a_n = n^2 (n-1)$.

- 29. Prove that any natural number n can be written as a sum of distinct powers of 2 (including $2^0 = 1$).
- 30. Let n_k be the number of ways to select a pair of elements out of a set of k elements. Give a recursive formula for n_k .
- 31. Use induction to show that

$$a + ar + ar^2 + \dots + ar^n = a\left(\frac{r^{n+1}}{r-1}\right)$$

for $r \neq 1$ and for all $n \geq 0$.

32. Use strong induction to show that if the sequence a_n is defined recursively by

 $a_1 = 3, a_2 = 5$ and $a_n = 3a_{n-1} - 2a_{n-2}$ for $n \ge 3$

then $a_n = 2^n + 1$ for every $n \in \mathbb{N}$.

- 33. (Exercise 3, from Biggs 1.1) Prove that if any two integers a and b are given, then there is an integer c such that $(a + b)c = a^2 b^2$.
- 34. (Exercise 2, from Biggs 1.2) Show that $0 \le x^2$ for any x in Z, and deduce that $0 \le 1$.
- 35. (Exercise 3, from Biggs 1.2) Deduce from the previous exercise that $n \leq n+1$ for all $n \in \mathbb{Z}$.
- 36. (Exercise 2, from Biggs 1.3) Give a recursive definition of the "n-th power" 2^n for all $n \ge 1$.
- 37. Show that if $n \ge 2$ and n is not prime then there is a prime p such that p|n and $p^2 \le n$.
- 38. Prove that 467 is prime.
- 39. Divide ± 25 by ± 3 using the Euclidean algorithm.
- 40. Let $m \in \mathbb{N}$. Show that $m \cdot n \ge m$ for all $n \in \mathbb{N}$.

[Hint: use induction on n.]

As a consequence, given $m, n \in \mathbb{N}$, if $m \cdot n = 1$ then m = n = 1.

- 41. Show that $4^{2n} 1$ is divisible by 15 for all $n \in \mathbb{N}$.
- 42. Show that if a and b are integers such that ab = 1 then a = b = 1 or a = b = -1.

[Hint: either both a and b are positive or both are negative.]

Deduce that if x and y are integers such that x|y and y|x then $x = \pm y$. In particular, if x divides 1 then $x = \pm 1$.

- 43. We know that the order relation " \leq " on \mathbb{Z} satisfies certain axioms, which are the following:
 - (i) $a \leq a$ for all $a \in \mathbb{Z}$. (*Reflexivity*)
 - (ii) If $a \leq b$ and $b \leq a$, then a = b for any $a, b \in \mathbb{Z}$. (Antisymmetry)
 - (iii) If $a \leq b$ and $b \leq c$, then $a \leq c$, for any $a, b, c \in \mathbb{Z}$. (Transitivity)

In general, given a set X and a relation \sim on X, we say that \sim is an *order relation* if it satisfies the following axioms:

- (i) $a \sim a$ for all $a \in X$. (*Reflexivity*)
- (ii) If $a \sim b$ and $b \sim a$, then a = b for any $a, b \in X$. (Antisymmetry)
- (iii) If $a \sim b$ and $b \sim c$, then $a \sim c$, for any $a, b, c \in X$. (Transitivity)

Prove that the divisibility relation "|" on \mathbb{N} is an order relation.

- 44. If c|a and c|b, then c|xa + yb for any $x, y \in \mathbb{Z}$. Prove this fact.
- 45. Let $a, b \in \mathbb{Z}$. Given $n \in \mathbb{N}$, then n | (b a) if and only if the remainder of a divided by n is the same as the remainder of b divided by n. That is, if the difference between a and b is a multiple a and b share the same remainder when divided by n, and vice versa.
- 46. Let a and b be positive integers and let d = gcd(a, b). Prove that there are integers x and y for which ax + by = c if and only if d|c.

- 47. Find the greatest common divisor of a = 1320 and b = 714 and express the result in the form ax + by for some $x, y \in \mathbb{Z}$.
- 48. Show that in any set of 12 integers there are two whose difference is divisible by 11.
- 49. Show that 725 and 441 are coprime and find integers x and y such that 725x + 441y = 1.
- 50. Let $d = \gcd(a, b)$. Which are the possible values for $\gcd(a + b, 2b a)$? Give examples in which $\gcd(a + b, 2b a)$ equals each of these possibilities.
- 51. Prove the following properties of the greatest common divisor:
 - (a) If $m \in \mathbb{N}$ then $gcd(ma, mb) = m \cdot gcd(a, b)$.
 - (b) If gcd(a, x) = d and gcd(b, x) = 1 then gcd(ab, x) = d.
- 52. If p and p' are distinct primes, prove that p does not divide p'.
- 53. Let $x, y \in \mathbb{Z}$. Prove that if $x^2 + y^2$ is divisible by 3 then x and y are both divisible by 3.
- 54. Prove that there are no integers $x, y, z, t \in \mathbb{Z}$ for which $x^2 + y^2 3z^2 3t^2 = 0$ unless all of them are 0.